Raschig Super-Ring Plus

Product Bulletin 251

The design of Raschig Super-Ring was published in 1998 and had set new standards in the performance of random packings. Nowadays it is called the first fourth generation random packing compared to earlier designs like Raschig-Rings, Pall-Rings and third generation packings. Soon after the Raschig Super-Ring was available to the Industry it was a new reference line for packing comparisons in terms of pressure drop, capacity and efficiency.

FRI and SRP tested

A new Random Packing offers new advantages in performance
Raschig Super-Ring Plus

Raschig Super-Ring Plus is the result of a consequent design development based on many years of research. The target was to stay with all advantages of Raschig Super-Ring but improve capacity and reduce pressure drop.

The preferred principles of gas/liquid countercurrent flow, coming along with Raschig Super-Ring Plus are as follows:

- **Minimize pressure drop** by arranging flat sinusoidal strips to an extreme open structure
- **Maximize capacity** by film flow preference on continuous sinusoidal strip arrangements
- **Maximize efficiency** by minimizing droplet formation inside the packing
- **Minimize foaming tendency** by minimizing droplet development and low pressure drop
- **Minimize fouling sensitivity** by generating continuous liquid films wetting the entire packing element
- **Maximize the effective surface area** by spreading the liquid film all over the packing
- **Maximize the open column cross section area** by optimized packing orientation
- **Increase mechanical strength** by strip rotation
The following figures demonstrate the pressure drop advantage of Raschig Super-Ring Plus #2.0 compared to Raschig Super-Ring #2.0.

In the air/water simulator the pressure drop and capacity advantage of Raschig Super-Ring Plus #2.0 became obvious. The packing opens up the column cross section area by its special design which results in noticeable fluiddynamic benefits. A capacity advantage of 8% and pressure drop reduction of 10% was measured.

Table 1: Technical data of the Raschig Super-Ring Plus

<table>
<thead>
<tr>
<th>Size</th>
<th>Material</th>
<th>Weight kg/m³</th>
<th>Surface area m²/m³</th>
<th>Free Volume %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.7</td>
<td>Metal</td>
<td>240</td>
<td>175</td>
<td>98</td>
</tr>
<tr>
<td>1.0</td>
<td>Metal</td>
<td>220</td>
<td>150</td>
<td>98</td>
</tr>
<tr>
<td>2.0</td>
<td>Metal</td>
<td>150</td>
<td>100</td>
<td>98</td>
</tr>
</tbody>
</table>
Raschig Super-Ring Plus #1

The following figures demonstrate the pressure drop advantage of Raschig Super-Ring Plus #1.0 compared to Raschig Super-Ring #1.0.

In the air/water simulator the pressure drop and capacity advantage is also proved for Raschig Super-Ring Plus #1.0. A capacity advantage of 8 % and pressure drop reduction of 10 % was measured.
The following figures demonstrate the pressure drop advantage of Raschig Super-Ring Plus #0.7 compared to Raschig Super-Ring #0.7.

In the air/water simulator the pressure drop and capacity advantage is also proved for Raschig Super-Ring Plus #0.7. A capacity advantage of 8 % and pressure drop reduction of min. 10 % was measured.
Mass transfer efficiency of metal

Desorption of CO2 from water into an atmospheric air stream

Absorption of NH3 from air in water in the gaseous phase

The efficiency of Raschig Super-Ring Plus #1.0 is practically the same as Raschig Super-Ring #1.0
Mass transfer efficiency of metal

Desorption of CO2 from water into an atmospheric air stream

Absorption of NH3 from air in water in the gaseous phase

The efficiency of Raschig Super-Ring Plus #2.0 is practically the same as Raschig Super-Ring #2.0
Raschig Super-Ring Plus

Pressure Drop data

system: air/water

Raschig Super-Ring Plus #1.0
Column diameter: 0.288 m

Raschig Super-Ring Plus #2.0
Column diameter: 0.450 m

Raschig LU Mass Transfer Technology - 5900-10-07-EST 2019 @ Raschig GmbH
Pressure Drop data

system: air/water

Raschig Super-Ring Plus #0.7
Column diameter: 0.288 m

Gas capacity Factor $F_g = u_g \rho_g$ in m/s [kg/m^3]^{1/2}
Raschig Super-Ring Plus #0.7 SRP tested

Height equivalent to a theoretical plate HETP and pressure drop per meter of packing height for metal under distillation test conditions

![Graph showing HETP and pressure drop vs. gas capacity factor](image-url)

- **RSR Plus #0.7**
- Cyclohexane/n-heptane; $p = 1.65$ bar
Raschig Super-Ring Plus #1.0
SRP tested

Height equivalent to a theoretical plate HETP and pressure drop per meter of packing height for metal under distillation test conditions.

Graphs showing HETP vs. gas capacity factor F_v in m/s $(kg/m^3)^{1/2}$ and pressure drop vs. gas capacity factor F_v in mbar mbar/m $(kg/m^3)^{1/2}$ for cyclohexane/n-heptane at $p = 1.65$ bar.
Raschig Super-Ring **Plus #2.0**

FRI tested

Height equivalent to a theoretical plate HETP and pressure drop per meter of packing height for metal under distillation test conditions

Chart 1:
- **Capacity Factor** C_s in m/s
- **HETP** in inch

Chart 2:
- **Capacity factor** C_s in m/s
- **Pressure drop** A_p/H in mbar/ft

Raschig LU-Mass Transfer Technology-5900-10-07-EST 2019 @ Raschig GmbH
Raschig Super-Ring **Plus**

Height equivalent to a theoretical plate HETP and flooding curve of packing for metal under distillation test conditions

Efficiency Comparison

FRI HP test column D = 1.22 m = 4 ft; system: iso-butane/N-butane, p = 11.4 bar = 165 psia

- RSR **Plus #2.0**

![Graph showing HETP and flooding curves for different packing types.](image)